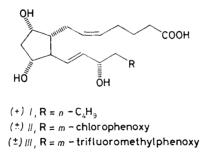
## Ag(I) COMPLEXES OF $F_{2\alpha}$ PROSTAGLANDINS

Ivan VESELÝ<sup>a</sup>, David ŠAMAN<sup>b</sup> and Ivan STIBOR<sup>b</sup>


 <sup>a</sup> Research and Development Division, Spolana Chemical Works, 277 11 Neratovice and
<sup>b</sup> Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 166 10 Prague 6

Received September 10th, 1986

 $PGF_{2\alpha}$  I and its synthetic analogs Cloprostenol II and Fluprostenol III form crystalline complexes with AgNO<sub>3</sub>. Application of these compounds to the production of pure prostaglandins is described. <sup>1</sup>H and <sup>13</sup>C NMR spectra are also discussed.

Numerous syntheses of prostaglanding  $F_{2\alpha}$  and its analogs have been described in literature<sup>1-4</sup>. The chromatographic separation of isomeric prostaglandins on AgNO<sub>3</sub>-doped silica gel was repeatedly published<sup>5-9</sup>. We have recently observed the formation of a crystalline substance when using the mentioned type of chromatography.

Our present contribution deals with a practical method of preparation of complexes IV - VI, their NMR spectra as well as the use of these compounds in production of pure prostaglandins I - III.



The complexes IV - VI crystallize from an equimolar solution of both components in a suitable mixture of solvents. The complexes are decomposed by means of a sodium chloride solution.

As far as the structure of complexes IV - VI is concerned, we assume that the substantial interaction is that between the silver ion and the carbon atoms of both

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

prostaglandin double bonds. This is in accordance with chemical shifts changes observed in <sup>1</sup>H and <sup>13</sup>C NMR spectra of the relevant compounds. All NMR data are summarized in Table I (<sup>1</sup>H NMR shifts for compounds II-VI), Table II (<sup>1</sup>H NMR coupling constants for compounds II-VI), Table III (<sup>13</sup>C NMR chemical shifts found for compounds I-VI).

<sup>1</sup>H NMR spectra of *II*, *III*, *V*, *VI* and <sup>13</sup>C NMR spectra of I - VI were studied in detail. In the <sup>1</sup>H NMR spectrum of compound *II*, four multiplets are observed in the aromatic protons area, which corresponds to the *m*-chlorophenoxy group, followed by the peaks of the four protons on double bonds, those of the five CH--O protons, and finally those of the remaining twelve CH(CH<sub>2</sub>) protons in the molecule. The olefinic peaks at  $\delta = 5.48$  and 5.67 belong to the double bond in configuration *Z*, position C-5, C-6. The multiplet at  $\delta = 5.84$  with an intensity of two protons corresponds then to the second double bond, position C-13, C-14. On the basis of a detailed analysis of the <sup>1</sup>H NMR spectrum, peaks in the spectrum were assigned to all protons in the molecule. With the exception of protons H-7 (H-8) and the

TABLE I <sup>1</sup>H NMR chemical shifts for compounds II - VI in tetradeuteriomethanol

| Proton | <i>II</i> | V        | Δδ    | III            | VI          | $\Delta\delta$ |
|--------|-----------|----------|-------|----------------|-------------|----------------|
| н-2    | 2·42 bt   | 2·45 bt  | +0.03 | <b>2∙4</b> 0 t | 2∙45 t      | +0.02          |
| H-3    | 1·78 m    | 1·84 m   | +0.06 | 1·77 m         | 1·82 m      | +0.02          |
| H-4    | 2·24 bq   | 2·32 bq  | +0.08 | 2·23 bq        | 2·31 bq     | +0.08          |
| H-5    | 5·48 m    | 5•75 dtt | +0.27 | 5•47 m         | 5·70 m      | +0.23          |
| H-6    | 5·67 m    | 5•92 dtt | +0.25 | 5·67 m         | 5·88 m      | +0.21          |
| H-7    | ~ 2.30    | ~ 2.43   | _     | 2·35 bt        | 2·42 bt     | +0.01          |
| H-8    | ~ 2.30    | ~ 2.43   |       | 2·47 dq        | 2·48 dq     | +0.01          |
| H-9    | 4.03 dt   | 4∙03 dt  | 0.00  | 4•03 ddd       | 4·03 ddd    | 0.00           |
| H-10   | 1•77 ddd  | 1.78 ddd | +0.01 | 1•77 ddd       | 1·78 ddd    | +0.01          |
| H-10'  | 2·52 ddd  | 2•60 ddd | +0.08 | 2•53 ddd       | 2•59 ddd    | +0.06          |
| H-11   | 4∙26 dt   | 4·33 bdt | +0.01 | 4•26 dt        | 4·32 bdt    | +0.06          |
| H-12   | 1.65 ddd  | 1·84 m   | +0.19 | 1·65 ddd       | 1·86 m      | +0.21          |
| H-13   | 5.84      | 6.02     | +0.18 | 5.86           | 6.00        | +0.14          |
| H-14   | 5.84      | 6.02     | +0.18 | <b>5·</b> 86   | 6.00        | +0.14          |
| H-15   | 4∙60 m    | 4.66 m   | +0.06 | 4∙64 m         | 4·69 m      | +0.02          |
| H-16   | 4∙08 dd   | 4·11 dd  | +0.03 | 4·14 dd        | 4·17 dd     | +0.03          |
| H-16'  | 4∙14 dd   | 4·19 dd  | +0.02 | 4·21 dd        | 4·25 dd     | +0.04          |
| H-18   | 7•13 dt   | 7·14 bt  | +0.01 | 7.327.41       | 7.34 - 7.42 | _              |
| H-20   | 7•08 ddd  | 7∙09 ddd | +0.01 | 7.32-7.41      | 7·34 7·42   | —              |
| H-21   | 7•39 dt   | 7∙40 t   | +0.01 | 7∙62 m         | 7·62 m      | 0.00           |
| H-22   | 7·04 ddd  | 7∙05 ddd | +0.01 | 7.32-7.41      | 7.34-7.42   | —              |

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

| above-mentioned protons H-13 (H-14), values of chemical shifts and coupling con-<br>stants were obtained for all peaks found in the spectrum. The relevant data for com-<br>pounds <i>II</i> , <i>III</i> , <i>V</i> , and <i>VI</i> are given in Tables II and III. It follows from the observed |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| differencies in chemical shifts that the preferred interaction between the silver atom                                                                                                                                                                                                            |
| and the molecule I, or II occurs in the area of the double bonds, without any                                                                                                                                                                                                                     |
| of the two double bonds being preferred in a significant manner. We attempted to                                                                                                                                                                                                                  |
| confirm the above described findings via analyses of <sup>13</sup> C NMR spectra. For the                                                                                                                                                                                                         |
| assignment of the indiviual peaks, the ${}^{13}CNMR$ spectrum of I as published by                                                                                                                                                                                                                |
| Cooper <sup>10</sup> was employed. However, peaks of double bonded atoms C-5, C-6, C-13,                                                                                                                                                                                                          |
| and C-14 (all being CH carbons) in compounds II, III, V, VI are found in the aro-                                                                                                                                                                                                                 |

| Coupling<br>constant | II   | V    | III  | VI   |
|----------------------|------|------|------|------|
| J(H-2, H-3)          | 7.0  | 7.2  | 7.3  | 7.3  |
| J(H-3, H-4)          | 7.0  | 7.2  | 7.3  | 7.3  |
| J(H-4, H-5)          | 7.0  | 7.2  | 7.3  | 7.3  |
| J(H-5, H-6)          | 10.8 | 10.5 | 10.8 | 10.6 |
| J(H-5, H-7)          | 1.4  | 1.2  | 1.4  | 1.2  |
| J(H-6, H-7)          | 7.0  | 7.0  | 7.3  | 7.2  |
| J(H-6, H-4)          | 1.3  | 1.0  | 1.5  | 1.0  |
| J(H-7, H-8)          | а    | а    | 7.3  | 7.3  |
| J(H-8, H-9)          | 7.4  | 7.8  | 7.3  | 7.8  |
| J(H-8, H-12)         | 11.0 | а    | 11.2 | 11.2 |
| J(H-9, H-10)         | 5.4  | 5.9  | 5.4  | 5.8  |
| J(H-9, H-10')        | 8.2  | 8.2  | 8.3  | 8∙4  |
| J(H-10, H-11)        | 2.3  | 2.4  | 2.4  | 2.5  |
| J(H-10', H-11)       | 5.4  | 5.3  | 5.4  | 5.6  |
| J(H-11, H-12)        | 5.4  | 5-3  | 5.4  | 5.6  |
| J(H-12, H-13)        | 9.0  | а    | 9.0  | а    |
| J(H-15, H-16)        | 6.4  | 6.3  | 6.5  | 6.6  |
| J(H-15, H-16')       | 4.6  | 4.6  | 4.5  | 4.4  |
| J(H-16, H-16')       | 9.6  | 9.8  | 9.6  | 9.6  |
| J(H-18, H-20)        | 2.0  | 2.0  | а    | а    |
| J(H-18, H-21)        | 0.6  | а    | а    | а    |
| J(H-18, H-22)        | 2.2  | 2.2  | а    | а    |
| J(H-20, H-21)        | 7.8  | 8.0  | 8.2  | 8.2  |
| J(H-20, H-22)        | 1.0  | 1.0  | а    | а    |
| J(H-21, H-22)        | 8.3  | 8.3  | 8.3  | 8.3  |

Coupling constants  $J_{HH}$  for compounds II, III, V, VI in tetradeuteriomethanol

<sup>a</sup> Not determined.

TABLE II

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

-- -- -- -- --

| Carbon | Ia      | $I^{b}$ | $IV^{b}$ | Δð   | П       | 7       | δδ   | III     | И       | δδ    |
|--------|---------|---------|----------|------|---------|---------|------|---------|---------|-------|
| 1      | 174-3 s | 174•5 s | U        | 1    | 177-2 s | 177-2 s | 0-0  | 177.4 s | 177-3 s | -0.1  |
| 7      | 33-5 t  | 33-4 t  | 33•5 t   | +0.1 | 34·4 t  | 34-2 t  | -0.2 | 34-3 t  | 34·3 t  | 0-0   |
| 3      | 24·9 t  | 24•8 t  | 24-9 t   | +0.1 | 25-9 t  | 25-9 t  | 0-0  | 25-9 t  | 26·1 t  | +0.2  |
| 4      | 26-7 t  | 26·6 t  | 26•8 t   | +0.2 | 27•5 t  | 27-9 t  | +0.4 | 27·6 t  | 28-0 t  | +0.4  |
| Ś      | 129-4 d | 129-9 d | 129•4 d  | 0-5  | 130-4 d | 130-3 d | -0.1 | 130-2 d | 130-7 d | +0.5  |
| 9      | 129-1 d | 128•7 d | 129-0 d  | +0.3 | 130-1 d | 126-7 d | -3.5 | 131-4 d | 127·7 d | -3.7  |
| 7      | 25•5 t  | 25-0 t  | 24·9 t   | -0.1 | 26·2 t  | 27-0 t  | +0.8 | 26·3 t  | 27•0 t  | +0.7  |
| 8      | 50-2 d  | 54·5 d  | 54•4 d   | -0.1 | 56-1 d  | 56•1 d  | 0-0  | 56·1 d  | 56·3 d  | +0.2  |
| 6      | 72·6 d  | 69-7 d  | 69•7 d   | 0-0  | 71·7 d  | 71·1·d  | -0.6 | 71·8 d  | 71·3 d  | -0.5  |
| 10     | 42·9 t  | 44•1 t  | 44·1 t   | 0-0  | 44·2 t  | 44•2 t  | 0-0  | 44-3 t  | 44-3 t  | 0-0   |
| 11     | 77-7 d  | 71•6 d  | 71·5 d   | -0.1 | 72·2 d  | 72·5 d  | +0.3 | 72·3 d  | 72·5 d  | +0.2  |
| 12     | 55·7 d  | 49·1 d  | 49•1 d   | 0-0  | 50-7 d  | 50·3 d  | -0.4 | 50-8 d  | 50·5 d  | -0.3  |
| 13     | 132-9 d | 132-0 d | 131•9 d  | -0.1 | 132-0 d | 131•4 d | 9.0  | 132-0 d | 131•4 d | 9.0   |
| 14     | 135-5 d | 135-7 d | 135·5 d  | -0.2 | 135-9 d | 133•4 d | -2.5 | 136-0 d | 134·1 d | - 1.9 |
| 15     | 73·2 d  | 76-0 d  | 75-9 d   | -0.1 | 77-7 d  | 77·5 d  | -0.2 | 77•8 d  | 77·6 d  | -0.2  |
| 16     | 37-2 t  | 37-8 t  | 37•7t    | -0.1 | 73-3 t  | 73·2 t  | -0.1 | 73-5 t  | 73•5 t  | 0.0   |
| 17     | 25·3 t  | 25-0 t  | 24•9 t   | -0.1 | 161·1 s | 160-9 s | -0.2 | 160•6 s | 160•6 s | 0-0   |
| 17     | 25-3 t  | 25-0 t  | 24-9 t   | -0.1 | 161·1 s | 160-9 s | -0.2 | 160•6 s | 160•6 s | 0-0   |
| 18     | 31•8 t  | 31-6 t  | 31•5 t   | -0.1 | 116•1 d | 116·1 d | 0-0  | 112·6 d | 112·7 d | +0.1  |
| 19     | 22·6 t  | 22-4 t  | 22·3 t   | -0.1 | 135-8 s | 135•7 s | -0.1 | U       | v       | Ι     |
| 20     | 14-0 q  | 14•1 q  | 14•1 q   | 0.0  | 121-9 d | 121-9 d | 0-0  | 118•4 d | 118-5 d | +0.1  |
| 21     | 1       | 1       | 1        | 1    | 131•4 d | 131•4 d | 0-0  | 132-0 d | 131-9 d | -0.1  |
| 22     | 1       | 1       | 1        | 1    | 114·1 d | 114·1 d | 0.0  | 119-3 d | 119-4 d | +0.1  |

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

1586

matic carbon atoms area of shifts and their assignment is difficult. We solved the problem by means of a heterocorrelated 2D NMR experiment<sup>11</sup>. An analysis of the experiment enabled us both to assign olefinic and aromatic atoms and to correct the assignment of C-9, C-11, and C-15 (or C-8 and C-12) atoms.

In spite of the usually proclaimed stereoselectivity of prostaglandin syntheses, a careful analysis of commercially available compounds I-III reveals various amounts of isomeric by-products. The most usual of these are  $\Delta^{5,6}$ -trans and 15-epi compounds. It is rather difficult task to monitor analytically these compounds on the 0.1-1% level. The purification of prostaglandins I-III can be easily accomplished using crystalline complexes IV-VI. The effect of single-cycle purification procedure is summarized in Table IV for compounds I and II.

## EXPERIMENTAL

Measurements of <sup>1</sup>H and <sup>13</sup>C NMR spectra were performed in the FT mode on a Varian XL-200 instrument (200 MHz for <sup>1</sup>H and 50·31 MHz for <sup>13</sup>C). The compounds were dissolved in (<sup>2</sup>H<sub>4</sub>)methanol. Solvent peaks  $\delta = 3.5$  in <sup>1</sup>H NMR and  $\delta = 49.0$  in <sup>13</sup>C NMR were used for chemical shift calculation. HPLC analyses were performed on a Spectra Physics 8000 B Liquid Chromatograph. Compounds I and IV were treated with 1-bromo-2-acetonaphthone as described in literature<sup>12</sup> and then analysed on a 300 × 3.2 mm column packed with Separon SIX (Laboratorni přístroje, Prague, Czechoslovakia), using n-hexane-dichloromethane-methanol 45:55:3.5 mixture and UV detection at 254 nm. Compounds II, III, V, VI were analysed directly on a 250 × 4 mm column packed with Separon C 18 (Lachema, Brno, Czechoslovakia), using methanol-water-acetic acid 550:443:7 and UV detection at 274 nm. Prostaglandins I-III are commercial products (Spolana Neratovice, Czechoslovakia).

Complex  $PGF_2$ . AgNO<sub>3</sub> (IV)

TABLE IV

Crude compound I, (179 mg, 0.507 mmol) in 6 ml of ethyl acetate was treated with 0.15 ml of a solution of silver nitrate in acetonitrile ( $c 4 \text{ mol } 1^{-1}$ ) at ambient temperature. The crude oil crystallized out by standing overnight (256 mg). One crystallization from ethanol-ethyl acetate (3 : 2) yielded 143 mg (53%) of a white solid, m.p. 142–150°C (decomp.). For C<sub>20</sub>H<sub>34</sub>AgNO<sub>8</sub> (524.4) calculated 45.81% C, 5.53% H, 2.67% N; found: 45.52% C, 5.17% H, 2.40% N.

| Compoun              | d $I \rightarrow I$ | $V \rightarrow I$ | $H \rightarrow V$ | ′ → II |
|----------------------|---------------------|-------------------|-------------------|--------|
| Parent               | 97-5                | 99·6              | 94-2              | 97•7   |
| 15-Epi               | 0·5<br>s 2·0        | 0.2               | 0.7               | 0.3    |
| $\Delta^{5,6}$ -tran | s 2.0               | 0.2               | 5.0               | 2.0    |

Single-cycle purification of I and II using their  $AgNO_3$  complexes IV and V (all data in %)

Collection Czechoslovak Chem. Commun. [Vol. 52] [1987]

## Complex Cloprostenol . $AgNO_3(I)$

To 6.0 g(14.1 mm ol) of *II* in 25 ml of ethanol, 3.55 ml of a solution of silver nitrate in acetonitrile  $(c \ 4 \ mol \ 1^{-1})$  w/s added. The mixture was diluted with 80 ml of ethylacetate, cooled and left overnight. White crystals were separated (6.32 g) and recrystallized from 2-propanol, yielding 5.30 g (64%) of pure *V*, m.p. 85–104°C (decomp.). For C<sub>21</sub>H<sub>27</sub>AgClNO<sub>9</sub> (594.8) calculated: 44.38% C, 4.88% H, 2.35% N; found: 44.26% C, 5.35% H, 2.19% N.

Comp'ex Fluprostenol . AgNO3 VI

2.3 g (5.02 mmol) of fluprostenol III was dissolved in 10 ml of ethanol and treated with 1.25 ml of a solution of silver nitrate in acetonitrile ( $c \ 4 \ mol \ 1^{-1}$ ). Ethyl acetate-hexane (1 : 1) (5 ml) was gradualy added and mixture was left at ambient temperature for 24 h. The solid was separated (2.22 g), crystallized from ethyl acetate-ethanol (2 : 1), and 1.1 g (35%) of pure VI was obtained, m.p. 102-113°C (decomp.). For C<sub>22</sub>H<sub>27</sub>AgClF<sub>3</sub>NO<sub>9</sub> (628.4) calculated: 42.05% C 4.32% H, 2.23% N; found: 41.73% C, 4.07% H, 2.40% N.

Decomposition of Complexes IV-VI

A solution of the complex (10 mmol) in 30 ml of methanol was treated with 5 ml of a saturated NaCl solution in water. The mixture was stirred for 15 min, silver chloride was filtered off, washed with methanol, and combined filtrates were evaporated *in vacuo*. Pure compounds I - III were obtained.

## REERENCES

- 1. Axen U., Pike J. E., Schneider W. P. in the book: *The Total Synthesis of Natural Products* (J. ApSimon, Ed.), Vol. 1, p. 81. Wiley, New York 1973.
- 2. Bindra J. S. in the book: The Total Synthesis of Natural Products (J. ApSimon, Ed.), Vol. 4, p. 354. Wiley, New York 1981.
- 3. Bindra J. S., Bindra R.: Prostglandin Synthesis. Academic Press, New York 1977.
- 4. Crabbé P. (Ed.): Prostaglandin Research. Academic Press, New York 1977.
- 5. Merritt M. V., Bronson G. E.: Anal. Chem. 48, 1851 (1976).
- 6. Merritt M. V., Bronson G. E.: Anal. Biochem. 80, 392 (1977).
- 7. Powell W. S.: Anal. Biochem. 115, 267 (1981).
- 8. Powell W. S.: Anal. Biochem. 128, 93 (1983).
- 9. Kissinger L. D., Robins R. H.: J. Chromatogr. 321, 353 (1985).
- 10. Cooper G. F., Fried J.: Proc. Natl. Acad. Sci. U.S.A. 70, 1579 (1973).
- 11. Bax A., Griffey R., Hawkins B. L.: J. Am. Chem. Soc. 105, 7188 (1983).
- 12. Brown L. W., Carpenter B. E.: J. Pharm. Sci. 69, 1396 (1980).